- · 《航空学报》栏目设置[09/30]
- · 《航空学报》数据库收录[09/30]
- · 《航空学报》投稿方式[09/30]
- · 《航空学报》征稿要求[09/30]
- · 《航空学报》刊物宗旨[09/30]
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。
航空航天科学与工程论文_基于多传感器融合卷积
作者:网站采编关键词:
摘要:文章摘要:航空发动机作为航空飞行器关键的动力组成部分,在内外多激励干扰情况下产生的机械故障采取传统的基于物理机理和信号分析的方法难以准确识别且耗时耗力。为此,本文提
文章摘要:航空发动机作为航空飞行器关键的动力组成部分,在内外多激励干扰情况下产生的机械故障采取传统的基于物理机理和信号分析的方法难以准确识别且耗时耗力。为此,本文提出基于多传感器信息融合的轴承故障诊断模型,对航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(1D-CNN)对实验获取的某航空发动机的轴承故障振动数据进行特征提取与分类,直接将不同传感器采集的波形信号作为输入,通过卷积、池化等一系列操作,输出最后的分类结果,舍弃了传统的基于信号分析故障诊断的繁琐步骤。实验验证,采用4个加速度传感器输入该模型对轴承故障进行分类与识别,其准确率可达100%,相较于采用支持向量机(SVM)和前馈神经网络对故障进行分类识别相比,该方法准确率分别提高了36.92%和18.9%,为航空发动机轴承故障诊断提供一种可行方法。
文章关键词:
项目基金:《航空学报》 网址: http://www.hkxbzz.cn/qikandaodu/2021/1102/1894.html