投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

力学论文_基于卷积神经网络的结冰翼型气动特性

来源:航空学报 【在线投稿】 栏目:期刊导读 时间:2021-11-12
作者:网站采编
关键词:
摘要:文章摘要:提出了基于卷积神经网络(Convolutional Neural Networks,CNN)的结冰翼型气动特性预测方法,设计了输入层结冰翼型图像规范,克服了复杂冰形在翼面同一位置法线方向存在多值,单

文章摘要:提出了基于卷积神经网络(Convolutional Neural Networks,CNN)的结冰翼型气动特性预测方法,设计了输入层结冰翼型图像规范,克服了复杂冰形在翼面同一位置法线方向存在多值,单值函数难以描述的问题。预测模型可同时预测多个迎角对应的升阻力系数,实现了直接从冰形图像到气动特性的快速预测,对升力系数(CL)和阻力系数(CD)预测结果的平均相对误差均可控制在8%以内。重点研究了不同卷积层数量、卷积核数量、卷积核尺寸对模型性能的影响规律:CNN的不同层次特征对应不同滤波频率,卷积层数增加会捕获更多高频特征量;增加卷积核数量可提取更多冰形特征,提升模型性能,但数量过多会增加冗余特征,降低模型泛化性能;CD预测模型对卷积核数量的最低要求大于CL,其原因在于,相较CL,CD不仅受翼面压差影响,还受摩阻特性影响,其建模所需的关键特征数量多于CL;增大卷积核尺寸,可扩大卷积操作“视野”,增强对冰形整体特征信息的提取,有利于提升模型泛化性能。相关结论为飞机结冰气动特性实时动态预测与监测提供了新的思路和方法支撑。

文章关键词:

论文分类号:V211.3

文章来源:《航空学报》 网址: http://www.hkxbzz.cn/qikandaodu/2021/1112/1925.html



上一篇:航空航天科学与工程论文_多特征融合的月面采样
下一篇:力学论文_NACA0012翼型等离子体冰形调控实验研

航空学报投稿 | 航空学报编辑部| 航空学报版面费 | 航空学报论文发表 | 航空学报最新目录
Copyright © 2018 《航空学报》杂志社 版权所有
投稿电话: 投稿邮箱: